A GROUP PURSUIT PROBLEM WITH PHASE CONSTRAINTS*

N.N. PETROV

> We sha $\perp \perp$ consider the problem of the pursult of a group of controlled objects by a group of controlled objects, with phase constraints on the states of the evaders.

1. In $\mathbf{B} R^{k}(k \geqslant 2)$, we consider a differential game with $n+m$ players: n pursuers $p_{i}, i=$ $1,2, \ldots, n$, and m evaders $E_{j}, j=1,2, \ldots, m$.

The law of motion of each of the pursuers P_{i} is

$$
\begin{equation*}
x_{i}{ }^{*}=a x_{i}+u_{i}, \quad\left\|u_{i}\right\| \leqslant 1, \quad a<0 \tag{1.1}
\end{equation*}
$$

The law of motion of each of the evaders E_{j} is

$$
\begin{equation*}
y_{j}^{*}=a y_{j}+v, \quad\|v\| \leqslant 1 \tag{1.2}
\end{equation*}
$$

At $t=0$ the initial positions of the pursuers $x_{1}{ }^{\circ}, \ldots, x_{n}{ }^{\circ}$ and of the evaders $y_{1}{ }^{\circ}, \ldots, y_{m}{ }^{\circ}$ are given, and it is assumed that

$$
x_{i}{ }^{\circ} \neq y_{j}{ }^{\circ}, \quad \mathrm{V} i, \mathbf{V}_{j}
$$

Let $z^{\circ}=\left(x_{1}{ }^{\circ}, \ldots, x_{n}{ }^{\circ}, y_{1}{ }^{\circ}, \ldots, y_{m}{ }^{\circ}\right)$. We shall assume that during the game the evaders never leave a convex polyhedral sel

$$
D=\left\{z \mid z \in R^{k},\left\langle p_{\lambda}, z\right\rangle \leqslant \mu_{\lambda}, \lambda=1, \ldots, r\right\}
$$

where p_{1}, \ldots, p_{r} are unit vectors, such that $\operatorname{Int} D \neq \varnothing$. Let $T>0$ be an arbitrary number and σ some finite partition $t_{0}=0<t_{1}<\ldots<t_{s+1}=T$ of the interval $[0, T]$.

Definition 1. A piecewise-programmed strategy V_{j} for player E_{j}, defined on $[0, T\}$, corresponding to the partition σ, is defined to be a family of mappings $b_{j} \boldsymbol{j}_{\mathrm{i}} \boldsymbol{l}=\mathbf{0}, \mathbf{1}, \ldots, s$, that associate with the quantities

$$
\begin{equation*}
\left(t_{l}, x_{1}\left(t_{l}\right), \ldots, x_{n}\left(t_{l}\right), y_{1}\left(t_{l}\right), \ldots, y_{m}\left(t_{l}\right)\right) \tag{1.3}
\end{equation*}
$$

a measurable function $v_{l}^{j}(t)$ defined for $t \in\left(t_{l}, t_{l+1}\right)$, such that $\left\|v_{l}^{j}(t)\right\| \leqslant 1, y_{j}(t) \in D, t \in\left(t_{l}, t_{l+l}\right)$.
Definition 2. A piecewise-programmed counter-strategy U_{f} for player p_{j}, corresponding to the partition σ, is defined to be a family of mappings $c^{i}, l-0,1, \ldots, s$, that associate with the quantities (1.3) and the controls $v_{l}^{\mu}(t), t \in\left[t_{l}, t_{l+1}\right), \mu=1,2, \ldots, m$ a measurable function $u_{l}{ }^{j}(t)$ defined for $t \in\left[t_{l}, t_{l+1}\right)$, such that $\left\|u_{l}{ }^{3}(t)\right\| \leqslant 1, t \in\left[t_{l}, t_{l+1}\right)$.

Denote the game by $\Gamma=\Gamma\left(n, m, z^{\circ}, D\right)$.
Definition 3. We shall say that encounter avoidance is possible in Γ if, for any $T>0$, there exist a partition σ of the interval $[0, T]$ and a strategy V_{j} for each player E_{j}, corresponding to σ, such that for any trajectories $x_{i}(t)$ of players p_{i} there exists a number $p \in\{1,2, \ldots, m\}$ such that

$$
y_{p}(t) \neq x_{i}(t), \quad t \in[0, T]
$$

where $y_{p}(t)$ is the trajectory of E_{p} realized in the given situation.
Definition 4. We shall say that capture is possible in Γ if there exists $T>0$ such that, for any trajectories $y_{j}(t)$ of players E_{j} and any partition of the interval [$0, T$, there exist piecewise-programmed counter-strategies U_{i} of players p_{i} corresponding to the partition σ, times $\tau_{j} \in[0, T]$ and numbers $p_{j} \in\{1,2, \ldots, n\}$, such that

$$
y_{j}\left(\tau_{j}\right)=x_{i^{\prime} j}\left(\tau_{j}\right) .
$$

where $x_{p_{j}}(t)$ is the trajectory of player $p_{j j}$ realized in the given situation.
2. Consider the game $\Gamma_{1}=\Gamma\left(n, 1, z^{\circ}, D\right)$. We may assume that $n \geqslant k$, since if $n<k$ one can show, using results of $/ 1,2 /$, that encounter avoidance is possible in this game.

Definition 5. We shall say that vectors $a_{i}, l=1, \ldots, s$, form a positive basis of R^{k} if, for any $x \in R^{k}$, there exist $\alpha_{i}>0, l=1, \ldots, s$, such that

$$
x=\alpha_{1} a_{1}+\ldots+\alpha_{s} a_{s}
$$

Assuming that a_{1}, \ldots, a_{s} are unit vectors, let us consider the functions
*Prikl.Matem.Mekhan.,52,6,1030-1033,1988

$$
\begin{gather*}
\rho_{l}\left(a_{l}, v\right)=\left\langle a_{l}, v\right\rangle+\sqrt{\left\langle a_{l}, v\right\rangle^{2}+1-\|v\|^{2}} \tag{2.1}\\
i=1,2, \ldots, s_{1}, \quad s_{1} \leqslant s_{i} \quad s_{1} \geqslant 1 \\
\rho_{i}\left(a_{l}, v\right)=\left\langle a_{l}, v\right\rangle, \quad l=s_{1}+1, \ldots, s \\
\|v\| \leqslant 1
\end{gather*}
$$

Then:
Theorem 1.*(*petrov N.N., simple pursuit when there are phase constraints. (Preprint), Leningrad, Deposited at VINITI, 27.03.84, $1684-84,1984$.) The vectors a_{1}, \ldots, a_{s} form a positive basis of R^{k} if and only if

$$
\delta=\min _{\| v i \leqslant 1} \max _{l} \rho\left(a_{i}, v\right)>0
$$

Remark 1. If a_{1}, \ldots, a_{s} form a positive basis, then $s \geqslant k+1$.
Instead of systems (1.1), (1.2), we shall consider the system

$$
\begin{equation*}
z_{i}^{\circ}=a z_{i}+u_{i}-v, z_{i}^{\circ}=x_{i}^{\circ}-y^{0} \tag{2,2}
\end{equation*}
$$

Define vectors a_{1}, \ldots, a_{r+n} as follows:

$$
\begin{align*}
& a_{i}=z_{i}{ }^{\circ} \| z_{i}^{0}: \tag{2.3}\\
& a_{n+!}=p_{l}, \quad l=1,2, \ldots, r
\end{align*}
$$

Theorem 2. Capture is possible in Γ_{1} if and only if the vectors (2.3) form a positive basis.

Proof. Suppose that the vectors (2.3) do not form a positive basis. We shall show that encounter avoidance is possible in Γ_{1}.

Take a vector $p^{\circ},\left\|p^{\circ}\right\|=1$, such that $\left\langle a_{j}, p^{\circ}\right\rangle \leqslant 0$. Define a strategy V as follows:

$$
\sigma=\{0,+\infty\}, v(t)=p^{\circ}, \mathrm{v} t \geqslant 0
$$

It is obvious that V is an admissible strategy. It follows from /1/ that

$$
\begin{equation*}
z_{i}(t) \neq 0, \quad \forall t \geqslant 0 \tag{2.4}
\end{equation*}
$$

Hence encounter avoidance will occur in Γ_{1}.
Now let the vectors (2.3) form a positive basis. We shall show that capture is possible in Γ_{1}.

The proof proceeds as follows.

1. It $r=0$, Theorem 2 tollows from $/ 1 /$.
2. $r=1$. It follows from Remark 1 that $n \geqslant k$. Suppose the assertion is false. Then for any $T>0$ there exists a strategy V for player E such that for any trajectories $x_{i}(t)$ of players P_{i} we have (2.4).

We may assume that the vectors $z_{1}^{\circ}, \ldots, z_{k}^{\circ}$ form a basis of R^{k}.
Define counter-strategies U_{i} for players P_{i} as follows:

$$
u_{l}^{i}(t)=v_{l}(t)-\rho_{i}\left(z_{i}^{c}\left\|z_{i}^{c}\right\|, v_{l}(t)\right) z_{i}^{\mathrm{o}}\left\|z_{i}^{c}\right\|
$$

where $\quad \sigma==\left\{0=t_{0}<t_{1}<\ldots<t_{s+1}=T\right\}$, and

$$
\rho_{i}\left(a_{i}, v\right)=\left\langle a_{i} v\right\rangle+\sqrt{\left\langle a_{i}, v\right\rangle^{2}+1-\|v\|^{2}}
$$

It can be shown that the counter-strategies U_{i} are admissible. Since V is an admissible strategy, it follows that

$$
\int_{0}^{t} \mathrm{e}^{-a \tau}\left\langle p_{1}, v(\tau)\right\rangle d \tau \leqslant \mu_{0}, \text { where } \mu_{0}--\left\langle\beta_{2}, y^{c}\right\rangle
$$

(we may assume that $\mu_{1}=0$).
since $p_{1}, z_{1}{ }^{\circ}, \ldots, z_{n}^{\circ}$ form a positive basis, it follows by Theorem 1 that

$$
\begin{aligned}
& \left.\delta=\min _{\| v i \leqslant 1} \max _{i} \rho_{l}\left(a_{l}, v\right)\right\rangle 0 \\
& \rho_{l}\left(a_{l}, v\right\rangle=\left\langle a_{l}, v\right\rangle+V \overline{\left\langle a_{l}, v\right\rangle^{2}+1-\|v\|^{2}} \\
& \rho_{n+1}\left(a_{n+1}, v\right)=\left\langle p_{1}, v\right\rangle
\end{aligned}
$$

Let $T_{1}(t), T_{2}(t)$ be two subsets of the interval $[0, t]$ such that

$$
\begin{aligned}
& T_{1}(t)=\left\{\tau \mid \tau \in[0, t],\left\langle p_{1}, v(\tau)\right\rangle<\delta\right\} \\
& T_{2}(t)=\left\{\tau \mid \tau \in[0, t],\left\langle p_{1}, v(\tau)\right\rangle \geqslant \delta\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \delta I_{2}-I_{1} \leqslant \mu_{0} \\
& I_{1}+I_{z}=a^{-1}\left(1-e^{-a t_{1}}\right.
\end{aligned}
$$

where

$$
I_{1,2}=\int_{\mathrm{T}_{1,2}\left({ }^{(t)}\right.} e^{-a \tau} d \tau
$$

The last two relations imply that

$$
I_{1} \geqslant\left[\delta\left(1-e^{-a t}\right)-a \mu_{0} \mathrm{l} /[a(1+\delta)]\right.
$$

It follows from the definition of U_{i} and from system (2.2) that

$$
\left\|z_{i}(t) e^{-a t}\right\|=\left\|z_{i}^{\circ}\right\|-\int_{0}^{t} e^{-a \tau} \rho_{i}\left(a_{i}, v(\tau)\right) d \tau
$$

Hence

$$
\begin{aligned}
& \sum_{i=1}^{n}\left\|z_{i}(t) e^{-a t}\right\| \leqslant \sum_{i=1}^{n}\left\|z_{i}^{0}\right\|-\int_{T_{i}(t)} e^{-a \tau} \max _{i} \rho_{i}\left(a_{i}, v(\tau)\right) d \tau \leqslant \\
& \sum_{i=1}^{n}\left\|z_{i}^{0}\right\|+\mu_{0} \delta \mid(1+\delta)-\left[\delta^{2}\left(1-e^{-a t}\right)\right][a(1+\delta)]
\end{aligned}
$$

Consider the function

$$
f(t)=\sum_{i=1}^{n}\left\|z_{i}^{0}\right\|+\mu_{0} \delta\left|(1+\delta)-\left[\delta^{2}\left(1-e^{-a t}\right)\right]\right|[(1+\delta) a]
$$

We have

$$
f(0)>0, \quad \lim _{t \rightarrow \infty} f(t)<0
$$

Hence there exists $T_{0}>0$. such that

$$
\begin{equation*}
f\left(T_{0}\right)=0 \tag{2.5}
\end{equation*}
$$

It follows from (2.5) that at a time T_{0}, at the latest, one of the functions $z_{i}(t)$ vanishes. This contradiction shows that capture must occur in Γ_{1}, no later than a time T_{0}.
3. r arbitrary, $r>1$. There are two possibilities:
a) There exists l such that the vectors $p_{l}, z_{1}{ }^{\circ}, \ldots, z_{n}{ }^{\circ}$ form a positive basis of R^{k}. Consider the set

$$
D_{1}=\left\{x \mid x \in R^{k},\left\langle p_{l}, x\right\rangle \leqslant \mu_{l}\right\}
$$

Since $D \subset D_{1}$, we see that capture occurs in Γ_{1}.
b) For no l do the vectors $p_{l}, z_{1}{ }^{\circ}, \ldots, z_{n}{ }^{0}$ form a positive basis. We shall construct a set $D_{1}=\left\{x \mid x \in R^{k},\left\langle p_{0} x\right\rangle \leqslant \mu_{0}\right\}$ such that $D \subset D_{1}$, and the vectors $p_{0}, z_{1}{ }^{0}, \ldots, z_{n}{ }^{0}$ form a positive basis.

Since $p_{1}, \ldots, p_{r}, z_{1}{ }^{\circ}, \ldots, z_{n}{ }^{\circ}$ form a positive basis of R^{k}, there exist $\alpha_{1}>0, \ldots, a_{r}>0, \beta_{1}>0$, ..., $\beta_{n}>0$ such that

$$
0-\alpha_{1} p_{1}+\ldots+\alpha_{r} p_{r}+\beta_{1} z_{1}^{\circ}+\ldots+\beta_{n} z_{n}^{\circ}
$$

As p_{0} we take the vector

$$
p_{0}=\alpha_{1} p_{1}+\ldots+\alpha_{r} p_{r}
$$

If $p_{0}=0$, the vectors z_{i}° form a positive basis.
Indeed, let $x \in R^{\mathbf{k}}$. Since by assumption $z_{l}{ }^{\circ}, l=1, \ldots, k$ constitute a basis of $R^{\boldsymbol{k}}$, there exist $\gamma_{l}, l=1, \ldots, k$, such that

$$
x=\gamma_{1} z_{1}^{\circ}+\ldots+\gamma_{k} z_{k}^{\circ}
$$

It follows from (2.6) that

$$
x=\gamma_{1} z_{1}^{\circ}+\ldots+\gamma_{k} z_{k}^{\circ}+d\left(\beta_{1} z_{1}^{\circ}+\ldots+\beta_{n} z_{n}^{\circ}\right)
$$

Taking d sufficiently large, we obtain where $\gamma_{i}^{0}>0$.

$$
x=\gamma_{1}^{\circ} z_{1}^{\circ}+\ldots+\gamma_{n}^{\circ} z_{n}^{\circ}
$$

If $p_{0} \neq 0$, analogous reasoning will show that the vectors $p_{0}, z_{i}{ }^{\circ}$ form a positive basis.
Consider the set

$$
D_{1}=\left\{x \mid x \in R^{k},\left\langle p_{0}, x\right\rangle \leqslant \mu_{0}\right\}
$$

where $\mu_{0}=\sum_{l=1}^{r} \alpha_{l} \mu_{l}$. Clearly, $D \subset D_{1}$. This completes the proof of Theorem 2 .
3. Consider the game Γ. Define a function $f(n)=\min \{m \mid$ encounter avoidance occurs in Γ for any admissible z°. Theorem 2 and the results of $/ 4,5 /$ imply

Theorem 3. Let D be an unbounded polyhedral set. Then there exist $c_{1}(D)>0, c_{2}(D)>0$ such that, for any $n \neq 1$,

$$
c_{1}(D) n \ln n \leqslant f(n) \leqslant c_{2}(D) n \ln n
$$

REFERENCES

1. PSHENICHNYI B.N. and RAPPOPORT I.S., On a problem of group pursuit. Kibernetika, 6, 1979.
2. IVANOV R.P., Simple pursuit-evasion on a compact set. Dokl. Akad. Nauk SSSR, 254, 6, 1980.
3. PETROV N.N., On the controllability of autonomous systems. Differents. Uravn., 4, 4, 1968.
4. PETROV N.N., PFTROV N. NIKANDR, On a differential game of "Cossacks and robbers". Differents. Uravn., 19, 8, 1983.
5. PETROV N.N., An estimate in a differential game with several evaders. Vestnik LGU. Mat., Mekh., Astron., 22, 4,
6. GRIGORENKO N.L., A problem of pursuit in many-person differential games. Mat. Sbornik, 135, 1, 1988.
7. Chikrif A.A., Group pursuit when the coordinates of the evaders are bounded. Prikl. Mat. Mekh., 46, 6, 1982.
E. CHIKRII A.A. and SHISHKINA N.B., on a problem of group pursuit when there are phase constraints. Avtomatika Telemekh., 2, 1985.

on an integrable case of perturbed keplerian motion*

V.A. KUZ'MINYKH

A general solution of a differential vector equation of perturbed Keplerian motion is derived for the case when the position vector and perturbing acceleration vector are collinear. A variable change is employed, in which the new independent variable is expressed in terms of the initial values of the phase variables and time, using the elliptical Jacobi function. The two-point boundary value problem for the initial equation is reduced to the cauchy problem. A parametric representation is obtained for the regularized trajectory of motion of a material point under the action of a central force.
Let us consider a differential vector equation of perturbed keplerian motion

$$
\begin{equation*}
\mathbf{r}=-\mu \mathbf{r} r^{-3}-w r \tag{1}
\end{equation*}
$$

in which $r, r^{\prime \prime}$ are the vectors of position and acceleration of a material point, μ is the gravitational constant of the centre of attraction and w is a constant.

The differential Eq. (1) determines the intermediate orbits of a geocentric satellite four-body problem $/ 1 /$, and of the known geocentric planetary problem of n bodies $/ 2 /$.

A general integral of the equation of the type (l) appears in a number of papers (e.g. in $/ 3 /$), but is not solved for the required coordinates of the vector $\mathbf{r}(x, y, z)$.

We shall assume that the following initial conditions are specified in the initial coordinate system for the instant $t=t_{0}$:

$$
\mathbf{r}\left(t_{0}\right)=\left(x_{0}, y_{0}, z_{0}\right), \quad \mathbf{r}^{-}\left(t_{0}\right)=\left(x_{0}, y_{0}^{\circ}, z_{0}^{\circ}\right) .
$$

Let us bring into our discussion the constant vector of angular momentum and the oscillating Laplace vector

$$
\mathbf{h}=\left[\mathbf{r}, \mathbf{r}^{\cdot}\right]=\left(h_{1}, h_{2}, h_{3}\right), \mathbf{I}=\left[r^{\cdot}, h\right]-\mu \mathbf{r} r^{-1}
$$

The differential equation for l now takes the form

$$
\mathbf{I}=-\mu^{-1} w r[\mathbf{I}, \mathbf{h}]
$$

[^0]
[^0]: *Prik1, Matem.Mekhan.,52,6,1033-1036,1988

